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Introduction

Ken Wharton’s short story ‘Aloha’ (in Analog Science
Fiction and Fact, June 2003) is a love story between two
people with opposite time arrows meeting around the mid-
point of a universe with both past and future low-entropy
boundary conditions.
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The funny thing about free will, Felix thought, was that it
always maintained its own illusion.

Aloha (for that was what he had named her) had implied that
they had met several times in her past—in Felix’s future—so
now he knew something about the choices he would soon make.
In a universe where free will reigned supreme, it would be a
simple matter to create a paradox. Felix merely had to choose
not to see Aloha again, and the universe would be inconsistent.

He laughed out loud at the idea. As if he were more powerful
than the universe.

No, paradox-prevention had turned out to be a major under-
pinning of reality, the lynchpin to explaining why quantum
mechanics worked the way that it did. He couldn’t force a
paradox, no matter how he tried.
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We are familiar with (maybe not quite as) odd things
happening through the time-reversal and time-recurrence
objections in the foundations of statistical mechanics.

I suggest we should be worrying about the same kind of
problems also in the context of decoherence.
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Standard models of decoherence take unentangled states
to extremely highly entangled states, and thereby very
effectively diagonalise the reduced state of the system in
the eigenbasis of the decohering variables.

Schematically,

|ψ〉 ⊗ |E0〉 →
∑
i

ci(t)|ψi〉 ⊗ |Ei(t)〉

5



We may imagine (and in finite dimensions we know we
have) recurrence after a suitably long time:

|ψ〉 ⊗ |E0〉 →
∑
i

ci(t)|ψi〉 ⊗ |Ei(t)〉 → |ψ〉 ⊗ |E0〉

What is happening in the very long time in-between? And
given that (except when we artificially isolate a system)
decoherence goes on all the time, should we not expect
that whatever is in fact happening is a fairly generic kind
of behaviour?
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Here is a possible intuition: the system is in a dynamically
stationary state of entanglement with the environment, in
that the interaction involves as many particles getting
entangled with the system as getting disentangled from
it.

We shall give a very elementary look at this possibility,
from two points of view:

• decoherence and branching

• dynamical consistency
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Decoherence and branching

What seems to tell against this possibility: decoherence
induces branching of the quantum state, but we cannot
have branching in both directions, or only trivially so.

And even if it makes sense, we can see that the universal
wave function is non-trivially branching all the time.

(Or rather, the evidence is naturally interpreted in terms
of constant branching, at least if we adopt a no-collapse
approach to quantum mechanics — e.g. Everett.)
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We shall need a few definitions.

A history is a time-ordered sequence of (Heisenberg-picture)
projectors:

Pi1(t1), Pi2(t2), . . . , Pin(tn)

The associated history operator is:

Cα(n) := Pin(tn) . . . Pi1(t1)
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If for all k the Pik(tk) are mutually orthogonal and sum
to the identity we have a history space.

If we form sums of the projections in {Cα(n)}, we obtain
a coarse-graining of the history space.
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Take a quantum state |Ψ〉, and define the decoherence
functional

D(Cα(n), Cβ(n)) := Tr
(
Cα(n)|Ψ〉〈Ψ|C

∗
β(n)

)
The positive number D(Cα(n), Cα(n)) is called the weight
of the history Cα(n).

11



Weak decoherence condition: for distinct histories,

ReD(Cα(n), Cβ(n)) = 0

Weak decoherence is equivalent to the disappearance of
interference terms between histories, i. e. we may sum
weights when coarse-graining (the weights ‘behave like
probabilities’).

[As Diósi points out, weak decoherence does not respect composition:
the real part of the decoherence functional of a product is not the
product of the real part of the decoherence functionals of the factors!]
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Decoherence condition: for distinct histories,

D(Cα(n), Cβ(n)) = 0

Decoherence is equivalent to orthogonality of the vectors
Cα(m)(tm)|Ψ〉, thus to existence of mutually orthogonal

projections Rα(m)(tm) summing to identity, with

Rα(m)(tm)|Ψ〉 = Cα(m)(tm)|Ψ〉 (1)

(‘permanent records’).
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In general, these projections might just be given by

Rα(m)(tm) = Cα(m)(tm)|Ψ〉〈Ψ|C∗α(m)(tm)

(‘generalised records’).

We shall focus on the familiar case of environmentally-
induced decoherence, with records in the environment, e.g.

Rα(m)(tm) = E1
i1

(tm)⊗ E2
i2

(tm)⊗ . . .⊗ Emim(tm) (2)
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The (schematic) picture is that at each time tk, the system
interacts with some degree of freedom in the environment
such that

|ψi〉 ⊗ |ek0〉 → |ψi〉 ⊗ |e
k
i 〉 (3)

and each such environmental degree of freedom then evolves
separately to |eki (tm)〉.
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Each projection (2) thus picks out exactly one component
in the state

|ψ(tm)〉 =
∑
im

cim(tm)|ψim〉|e
1
i1

(tm)〉|e2i2(tm)〉 . . . |emim(tm)〉

and is a permanent record in the sense of (1).
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Note that if we define a fine-graining of the original history
space by

Pj1(t1)⊗Rα(1)(t1) . . . , Pjn(tn)⊗Rα(n)(tn) (4)

this space decoheres, and for tm ≥ tk the ‘conditional
weight’ of

∑
α(m)|ik=jk Rα(m)(tm) given Pjk(tk) is 1.
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The space (4) is an example of a history space that is
branching (past-deterministic, backwards deterministic),
i. e. any two histories of non-zero weight that coincide at
any time tj, coincide also at all previous times ti.

One can prove the branching-decoherence theorem : if a
history space is branching, then it is decoherent; and if a
history space is decoherent, then it is a coarse-graining of
a branching history space.
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Note that analogous definitions and results can be derived
if we consider instead the so-called backwards decoherence
functional

D(C∗α(n), C
∗
β(n)) = Tr

(
C∗α(n)|Ψ〉〈Ψ|Cβ(n)

)
Indeed, imagine that at each tk, the system interacts with
some degree of freedom in the environment such that

|ψi〉 ⊗ |fki 〉 ← |ψi〉 ⊗ |f
k
0 〉 (5)

backwards in time.
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Then the projections

Sα̃(m)(tm) = Fmim(tm)⊗ Fm+1
im+1

(tm)⊗ . . .⊗ Fnin(tm)

(with α̃(m) the multi-index im, im+1, . . . , in) are records
in the environment of later events (one might call them
‘antirecords’, or ‘prophecies’).

It follows that the histories

Pj1(t1)⊗ Sα̃(1)(t1) . . . , Pjn(tn)⊗ Sα̃(n)(tn) (6)

will define a history space that is antibranching (forward
deterministic, future-deterministic).
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There is also a ‘two-state’ version of the formalism that
uses the time-symmetric decoherence functional

Dsym(α(n), β(n)) = Tr
(
ρfCα(n)ρiC

∗
β(n)

)
Note, however, that if both initial and final state are pure
then

Dsym(α(n), β(n)) = 〈Ψf |Cα(n)|Ψi〉〈Ψi|Cβ(n)|Ψf〉
which will vanish for any distinct histories iff only one
history has non-zero probability.
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Note also that forwards and backwards decoherence can
be non-trivially satisfied simultaneously.

If that is the case, it follows that forwards and backwards
weights coincide.

(See GB, ‘Probability, Arrow of Time and Decoherence’,
http://philsci-archive.pitt.edu/3157/, where the
main example, however, is not physically interesting.)
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Now for the sake of argument assume that (3) and (5) are
dynamically consistent, at least during the given interval
[t1, tn] (we return to this assumption in the next section).

Then our history space

Pi1(t1), Pi2(t2), . . . , Pin(tn)

will indeed decohere both forwards and backwards.
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Further, the history spaces (4) and (6) will be fine-grainings
that are respectively branching and antibranching, and
one would expect that their common refining

Pj1 ⊗Rα(1) ⊗ Sβ̃(1)
, . . . , Pjn ⊗Rα(n) ⊗ Sβ̃(n)

would be in fact both branching (past-deterministic) and
antibranching (future-deterministic).

That is, a history space satisfying both (3) and (5) would
be a coarse-graining of a deterministic history space.
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It this by itself a fatal objection to the existence of both
records of past and of future events?

Not necessarily: branching becomes perspectival.

If one coarse-grains over the records of the future, one
recovers the familiar branching structure of decoherence.

And if one coarse-grains over the records of the past, one
obtains an analogous antibranching structure.

The real question is that of dynamical consistency of (3)
and (5).
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Dynamical consistency

We shall be looking at a toy example. Take n = 2, and
let the state at t−1 be a superposition or mixture of the
four components

|ψ1〉|e10〉|e
2
0〉|f

1
1 〉|f

2
1 〉

|ψ1〉|e10〉|e
2
0〉|f

1
1 〉|f

2
2 〉

|ψ2〉|e10〉|e
2
0〉|f

1
2 〉|f

2
1 〉

|ψ2〉|e10〉|e
2
0〉|f

1
1 〉|f

2
2 〉

(no records of past events, but records of future events).
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The state evolves between t−1 and t+1 to the corresponding
superposition or mixture of

|ψ1〉|e11〉|e
2
0〉|f

1
0 〉|f

2
1 〉

|ψ1〉|e11〉|e
2
0〉|f

1
0 〉|f

2
2 〉

|ψ2〉|e12〉|e
2
0〉|f

1
0 〉|f

2
1 〉

|ψ2〉|e12〉|e
2
0〉|f

1
0 〉|f

2
2 〉

consistently with (3) and (5).
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Now assume the system evolves freely between t+1 and

t−2 according to some unitary evolution. We obtain the
corresponding superposition or mixture of:

(a|ψ1〉 + b∗|ψ2〉) |e11〉|e
2
0〉|f

1
0 〉|f

2
1 〉

(a|ψ1〉 + b∗|ψ2〉) |e11〉|e
2
0〉|f

1
0 〉|f

2
2 〉

(b|ψ1〉 − a∗|ψ2〉) |e12〉|e
2
0〉|f

1
0 〉|f

2
1 〉

(b|ψ1〉 − a∗|ψ2〉) |e12〉|e
2
0〉|f

1
0 〉|f

2
2 〉

(they are orthogonal, so there is no interference—and no
terms cancel out—even with an initial superposition).
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But now we are in trouble, because |ψi〉 does not always
match up with |f2

i 〉, e. g. the first component at t−2 is

a|ψ1〉|e11〉|e
2
1〉|f

1
0 〉|f

2
1 〉 + b∗|ψ2〉|e11〉|e

2
2〉|f

1
0 〉|f

2
1 〉

By (5), since |ψ2〉|f2
2 〉 7→ |ψ2〉|f2

0 〉, in order to preserve

unitarity between t−2 and t+2 this needs to evolve to some

a|ψ1〉|e11〉|e
2
1〉|f

1
0 〉|f

2
0 〉 + b∗|ψ2〉|e11〉|e

2
2〉|f

1
0 〉|f

2
? 〉

with 〈f2
0 |f

2
? 〉 = 0, but this is now inconsistent with (5).
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As with Felix in the short story, if the system evolves freely
the universe is inconsistent...
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As with Felix in the short story, if the system evolves freely
the universe is inconsistent...

But what about paradox prevention?
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There are in fact two (essentially equivalent) methods of
implementing ‘paradox prevention’.

First, we can let the two-state formalism postselect for the
‘good’ components, by postulating there is a final state
that is a mixture just of the desired components

|ψ1〉|e11〉|e
2
1〉|f

1
0 〉|f

2
0 〉

|ψ2〉|e11〉|e
2
2〉|f

1
0 〉|f

2
0 〉

|ψ1〉|e12〉|e
2
1〉|f

1
0 〉|f

2
0 〉

|ψ2〉|e12〉|e
2
2〉|f

1
0 〉|f

2
0 〉

(it has to be a mixed state because of (7)).
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The forward-evolving state ρi will develop components
containing states orthogonal to |f2

0 〉, and the backwards-
evolving state ρf will develop components containing states

orthogonal to |e10〉, but they will all be assigned weight 0
by the symmetrised decoherence functional.
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Alternatively, we can deny there is free evolution between
t+1 and t−2 , and postulate that each of

|ψ1〉|e11〉|e
2
0〉|f

1
0 〉|f

2
1 〉

|ψ1〉|e11〉|e
2
0〉|f

1
0 〉|f

2
2 〉

|ψ2〉|e12〉|e
2
0〉|f

1
0 〉|f

2
1 〉

|ψ2〉|e12〉|e
2
0〉|f

1
0 〉|f

2
2 〉

evolves, respectively,
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to

|ψ1〉|e11〉|e
2
0〉|f

1
0 〉|f

2
1 〉

|ψ2〉|e11〉|e
2
0〉|f

1
0 〉|f

2
2 〉

|ψ1〉|e12〉|e
2
0〉|f

1
0 〉|f

2
1 〉

|ψ2〉|e12〉|e
2
0〉|f

1
0 〉|f

2
2 〉

(possibly up to phases). Note that this step can be done
unitarily (because the vectors are orthogonal).

Combining this with (3) and (5), we see that all histories
are indeed fully deterministic.
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E.g. we could have at t+1 the state

1√
2

(
a|ψ1〉|e11〉|e

2
0〉|f

1
0 〉|f

2
1 〉 + b∗|ψ1〉|e11〉|e

2
0〉|f

1
0 〉|f

2
2 〉+

+b |ψ2〉|e12〉|e
2
0〉|f

1
0 〉|f

2
1 〉 − a

∗|ψ2〉|e12〉|e
2
0〉|f

1
0 〉|f

2
2 〉

)
evolving at t−2 to

1√
2

(
a|ψ1〉|e11〉|e

2
0〉|f

1
0 〉|f

2
1 〉 + b∗|ψ2〉|e11〉|e

2
0〉|f

1
0 〉|f

2
2 〉+

+b |ψ1〉|e12〉|e
2
0〉|f

1
0 〉|f

2
1 〉 − a

∗|ψ2〉|e12〉|e
2
0〉|f

1
0 〉|f

2
2 〉

)
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N.B. this can be rewritten as
1√
2

(
|ψ1〉|e11〉|e

2
0〉|f

1
0 〉

[
a|f2

1 〉 + b∗|f2
2 〉

]
+

+|ψ2〉|e12〉|e
2
0〉|f

1
0 〉

[
b|f2

1 〉 − a
∗|f2

2 〉
])

evolving to

1√
2

(
|ψ1〉

[
a|e11〉 + b|e12〉

]
|e20〉|f

1
0 〉|f

2
1 〉+

|ψ2〉
[
b∗|e12〉 − a

∗|e12〉
]
|e20〉|f

1
0 〉|f

2
1 〉

)
which is suggestive.
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Indeed, while the system is in fact entangled also with the
antirecords of its state at t2, it has not yet interacted with
this degree of freedom in the environment.

If we assume this entanglement is hard to detect and we
neglect the antirecords, we are left with the ‘illusion’ of
free evolution for the system, since

|ψ1〉
[
a|e11〉 + b|e12〉

]
|e20〉 + |ψ2〉

[
b∗|e12〉 − a

∗|e12〉
]
|e20〉 =[

a|ψ1〉 + b∗|ψ2〉
]
|e11〉|e

2
0〉 +

[
b|ψ1〉 − a∗|ψ2〉

]
|e12〉|e

2
0〉
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Note that the two-state method yields the same histories
(up to histories of zero weight), and the coefficients can
be chosen so as to yield the same non-zero probabilities
as with the constrained unitary evolution.

With either method we obtain, indeed, a history space
that is deterministic.
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Conclusion

We see that time-symmetric decoherence leads to some
satisfiable but odd constraints on the dynamical evolution
along histories.

Indeed, the evolution of the system between t+1 and t−2
depends on both the records of the past and the future.

On the other hand, this behaviour might not be obvious
to a time-directed observer.
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If some such effect were generically present in decoherence
interactions, the customary picture of branching through
decoherence would be misleading.

Branching would be a perspectival effect of coarse-graining
over the (unobserved) records of the future, and there
would be no branching at a more fundamental level.
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The toy model is overly simple, but it may well generalise
to the case in which an interaction between different parts
of the system is switched on and off, as in a measurement.

The results would thus apply also to situations standardly
described as branching in the Everett theory, and one
would not have splitting but simply uncertainty about
(present records of) the future!
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